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Any member of a set of complex structure factors can be approximately determined by various combina- 
tions of the others. In noncentrosymmetric structures, this property has been put to use mainly by applying 
phase-determining formulae related to the self-convolution, or squared structure. These are seen to 
comprise the simplest class of formulae obtainable from a generalized product relationship. Specific 
formulae that emphasize use of a priori phase information are developed for application. The under- 
lying equivalence of centrosymmetric and noncentrosymmetric phase-determining formulae is demon- 
strated. 

1. Introduction 

It has been widely accepted that in crystal-structure 
problems of moderate complexity, the structure moduli 
obtained from X-ray diffraction experiments can be 
effectively employed in finding explicit restraints on the 
phases of structure factors. This has led to the develop- 
ment of algebraic relationships which make it possible 
to solve centrosymmetric phase problems by a routine 
arithmetic procedure. Hauptman & Karle (1953) have 
detailed such a procedure, and although their work has 
been subject to criticism and modification by many 
workers in the field it remains in use unchanged in 
essential concept, especially their ~z formula or Sayre 
equation (Sayre, 1952). In spite of development of the 
basic triple-product relationship for noncentrosymme- 
tric structures (Hughes, 1953; Cochran, 1955; Karle & 
Hauptman, 1956), the noncentrosymmetric phase 
problem remains beyond the kind of procedure so 
readily applied in the centrosymmetric case. 

One purpose of this paper is to begin a unification 
between respective approaches to the solution of the 
centrosymmetric and noncentrosymmetric phase prob- 
lems. Clearly, the principal information available for 
attacking any phase problem is the set of structure 
moduli. If by various criteria a structure is judged to be 
centrosymmetric, powerful relationships employing 
such quantities as (IEkl z -  [El'-) can be used to estimate 
some phases. An apparently trivial distinction can be 
made in observing that we can, equally well, write 
(E~,-E2), since in the centrosymmetric case 2~0k=0 
for all k. Nevertheless, the distinction is useful; we may 
now interpret the employment of IEI z in phase-deter- 
mining formulae for the centrosymmetric case as 
use not only of structure moduli, but also of (perhaps 
trivial) phase information. These observations lead 
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to the possibility that phase-determining formulae can 
be found that utilize apriori phase information, whether 
determined by permissible assignment or symmetry 
requirements, and are applicable to noncentrosymme- 
tric structures, paralleling the existing centrosymmetric 
formulae. 

For most structures, symmetry-imposed restraints 
on particular phases can be found and uniquely stated 
in the form 2~0=~r, where c~ is a rational number; 
indeed, it is just this information which has proved to 
be an invaluable aid in solving centrosymmetric phase 
problems. In the present paper, we find several phase- 
determining relationships which relate complex struc- 
ture factors, and we emphasize those relationships that 
employ the information resident in 2(o to advantage. 
With the exception of (2.26), each equation in §2 
(especially 2.9, 2.14, 2.19, 2.22, and 2.23) has its ob- 
vious analog among the accepted centrosymmetric 
formulae. Equation (2.26) is a new general product 
formula; the more general form (3.4) will probably be 
of little practical value other than in multiple-term 
equations such as (2.22). These relationships are sum- 
marized by equation (3.8), which retains its validity in 
the presence or absence of a center of symmetry. 

2. Tangent formulae 

In space group P 1, assuming equal atoms, we take the 
normalized structure factor associated with reciprocal 
lattice vector k, to be defined by 

Ek=lEkl exp (i~ok)- N1/2 exp (2~zik. rj) (2.1) 
J=l 

where the N atoms in the unit cell lie at the ends of the 
position vectors rj. Then, 

1 
]Ek[ cos ~0k-- N1/2 ~ cos 2zck. r j ,  (2.2) 

J=l 
1 N 

IEkl sin ~0k= N1/2 ~ sin 2zck. r j .  (2.3) 
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Evidently, in (2.3) we may replace k by h - k ,  where h 
is fixed, and write 

((IEkl cos (ok) (IEh-kl sin ~0h_k))k = 

( 1  [ j,~= ] )  
N j. l c ° s 2 z & ' r j s i n 2 n ( h - k ) ' r  i, k,  (2.4) 

where ( . . . ) k  indicates an average over the vectors k. 
If we write out the right-hand side of (2.4) in detail, and 
assume that for a reasonably large number of vectors 
k, only the term cos 2 2rck. rj sin 2~zh. rj survives; 
then, since cos z ~ = ½ +½ cos 2c~, it is seen that (2.4) is 
equivalent to 

1 
([EkEh-kl COS (ok sin (oh-k)k-- 2NX/2 [Ehl sin (oh, (2.5) 

provided the average over k consists of a sufficiently 
large number of terms. 

In analogous fashion, we can show that 

1 
( IgkgU-kl  sin ~0k COS (oh_k)k = 2N1/z IEhl sin (oh, (2.6) 

1 
(IEkEh-kl COS (ok COS (o~-k)k-- 2N1/2 lEvi cos ~0~, (2.7) 

1 
( IEkEh-kl  sin (O~, sin (Dh_k)k = ---2~VI/2 IEhl COS (oh. 

(2.8) 

Combining (2.5) through (2.8) in a straightforward 
way, we have the standard tangent formula of Karle & 
Hauptman (1956), namely, 

(IEkEh-kl sin ((ok+~0h-k))k . (2.9) 
tan ~0h= TlI((Oh) = ( I E ~ h - k l  cos ((ok +(oh-k))k 

We have interpreted the employment of ([E[ 2 -  1) in 
centrosymmetric phase problems as a means of utilizing 
the phase information resident in 2(O (=0) ,  and it is 
natural to anticipate a similar use for 2f0 in noncentro- 
symmetric problems. In order to find equations explicit 
in 2(O and of the type (2.9), we start with the square of 
(2.1). The real and imaginary parts of (2.1) and its 
square may be combined to give equations of the type 
(2.4); the procedure used in finding (2.5) then leads to: 

((IEul '  cos 2(ok) (IE~-zkl sin (oh-2k))k 

1 
2N lEvi sin (oh, (2.10) 

((IEkl ~ sin 2~0k) (IE~-,kl COS (oh-2k))k 

1 
2N IEhl sin ~Ph, (2.11) 

(( lEvi '  cos 2~o k) (IE~-2kl cos ~0h-~k))k 

1 
= 2N IEhl cos (oh, (2.12) 

((IEkl z sin 2(ok) (IE~-zkl sin CPh-2k))k 

1 
2N IEhl cos (o,~. (2.13) 

Combining (2.10) through (2.13) in a straightforward 
way, we have 

(IEklZlEh_zkl sin (2(ok + (o_h72k))k 
tan (oh= T21((Jgh) = (iEklZlEh_zk I cos (2(ok +~0h-2U))k " 

Proceeding as before we can also show that 

((IEkl 2 COS 2(ok) ([Eh-kl 2 sin 2(oh-k))k 

1 1 
= --~-[Ehl z sin 2~0h 2N3/z [E2hl sin ~02h, 

(2.14) 

(2.15) 

((ILk[ 2 sin 2(ok) (Igh-,,? cos 2(oh-k))k 
1 1 

= ~-[Eh]  z sin 2(oh 2N3/2 IE,~I sin (o2h, (2.16) 

((lEvi ~ cos 2~0k) ( IG_~I  z cos 2(on-k))k 

1 1 
= ~ IEh[ 2 cos 2fflh- 2N3/2 ]E2hl COS ~02h, (2.17) 

<(IEkl z sin 2~0k) (IEh_kl 2 sin 2(oh-k)>k 

1 1 
= ---N IEhlz cos 2~0h+ ~ 3 / 2  IEzh[ COS (o,'h • (2.18) 

If we follow Hauptman (1970) in ignoring terms of 
order 1/N 3/2, the combination of (2.15) through (2.18) 
leads to 

(IEkEh_kl 2 sin (2~0k + 2(oh_k))k 
tan 2~0h= T22(2(Oh) = (iEkEh_kl2 COS (2~0k + 2(oh-k))k " 

(2.19) 

If, on the other hand, we retain terms of order 1IN a/2, 
the combination of (2.15) through (2.18) leads to 

tan (o2h-- T2.22((f12h) 

21Ehl 2 sin 2~h--N(IEkEh-kl 2 sin (2~0k + 2~0h-k))k 
21Ehl z cos 2(oh-- N(IEkEh-kl 2 cOS (2(ok + 2~0h-k))k 

(2.20) 

which was to be expected from the work of Cochran 
(1954). For if we follow the derivation of his equation 
(13c), and concern ourselves not with the Patterson 
function, P(r), but with the function A(r), where 

A(r)= ~ IFhl 2 exp (i2(oh) exp (-- 27~ih. r ) ,  (2.21) 
h 

in the noncentrosymmetric case we find 

IE2~l exp (i(o2~) = N1/~(21Ehl ~ exp (i2~0h) 

--N(IEi, Eh_kl z exp [i(2~0k + 2~Ph-k)])k) (2.22) 

from which (2.20) immediately follows. We know (2.9) 
to be useful when the vectors k are restricted such that 
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IEkl is large, and we expect (2.14) and (2.19) to be 
similarly useful, but (2.20) as written is valid only when 
the averages extend over the complete set of vectors k. 

Finally, noting equation (2) of Cochran (1955) and 
the appropriate single-term special cases of (2.9) and 
(2.14), we have 

tan ~ 2 h  = r 2 ( ( ~ 2 h ) =  s i n  2q)h/COS 2(Ph, (2.23) 

which gives the most probable value of @2h, provided 
2~0h is known and there are no other contributors to the 
averages in (2.9) and (2.14). 

A generalization that encompasses (2.9), (2.14), and 
(2.19) can be found in the following way: 

E k E h -  P rt k = ~ exp (2rcik rj) 
q /2 " 

j = l  

tN~ P k) r j ]}q)k . (2.24) X { - ~ / 2  __~exp[2z~i (h- -q  • 

Therefore, when p = 0 (mod q), p and q being integers, 

1 N ]~ 
x ~ ~ exp (2z ih . r j )  + ( R ) k ,  (2.25) 

J = l  

which, if we neglect (R)k (see below), gives our gener- 
alization 

( _ p \ (2.26) NpaE~ = El, El, -a k/k '  

where 
p~ 

As a tangent formula, (2.26) becomes 

tan (q~0h)= Tpq(qfph) 

_ (IEkl~lEh--¼kl~sin(p~Pk+q~On-- ~-k))k 

-- QEkIPIEh. : k l  q COS (prpk+qCPh- ~- k))U 

(2.27) 

(2.28) 

3. A general procedure for finding tangent formulae 

The procedures of the preceding section are ill-suited to 
developing a complete set of phase relationships. We 
now show that it is possible, in principle, to find as 
large a variety of tangent formulae as might be 
desired. We follow exactly the work of Vaughan (1959), 
except the quantities Ekj are taken as observables and 
the quantity to be estimated is not assumed to be an 
origin invariant. Vaughan's equation (12) then be- 
comes 

v ~ m  

G -  ~ r(~) . (3.1) .-. a~ . . . . .  . . ( E , , O  °1. . ( E k . )  a",  
a l , .  • . , a n  

where v = a l + . . .  +a, is the total order, m is the 
selected maximum order, c7(~) are constants v a l ,  • . . ,  an 

which may be determined by least-squares methods, 
and G is any product of normalized structure factors. 
Again, following Vaughan we make the following 
approximations: 

(a) All terms will be omitted from (3.1) for which the 
covariances 

G ( E _ k l ) a l .  . . ( E _ k n )  an 

are zero. 
(b) All terms that have a common value for the above 

covariances have the same coefficient in (3.1). 
We limit ourselves, for the present, to considering 

equations of one coefficient in accordance with (a) and 
(b). For example, to estimate E~, in space group P1, 
we consider for our first case 

r p EhE-k j  > 0 

It immediately follows that kj = (r/p)h and 

E ~ C E ~  (3.2) 
- h '  
P 

sin P~-~n 
tan (r~0h) ~ P , 

cosp~0~ 
- - h  
P 

which is equivalent to (2.23) when r = 1 and p = 2. For 
our second case, we consider 

E,  r-; r.~ "-0 (3.3) h 1-" - k l  L '  - k j  J • 

It immediately follows that kj=(r/q)h-(p/q)k~ and 

"~ Z (3.4) E ~ _  C Eg E~ P k '  k ah- , i  

IfklPlE h- k" Fsin( p k+q " h -  "k) 

tan lElklPlE~_h_ c o s  q 0, 
h - -  P k )  $ 

q q 

(3.5) 
which is equivalent to (2.28) if r = q. 

It is clear that a single-term formula obtained by the 
above procedure is valid, in the sense that any coeffi- 
cient in (3.1) may be evaluated. Nevertheless, if we seek 
a reliable determination of some particular phase in- 
formation it will, in general, be necessary to construct 
a multiple-term formula, e.g. (2.20). In the general 
case, we may have to evaluate the relative importance 
of each of many terms and arbitrarily select the most 
significant few for use in the estimation of phases. The 
problem then is to determine each coefficient in (3.1) 
and compute G. 

We can readily justify (2.26) along these lines. In its 
derivation, the term (R)k was ignored, subject to the 
condition that p be an integral multiple of q. In the 
context of this section, it is necessary to evaluate co- 
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variances of the type (3.3) to validate our neglect of 
<R>k. Recalling the form of the left-hand side of (2.25), 
we must evaluate 

E'__q P ~ P (3.6) T hEk Eh-  -a k 

for integral r and fixed h, k, p, and q. Straightforward, 
but tedious, computation reveals that if r = q ,  expres- 
sion (3.6) is of order N -p/z , otherwise it is of order 
N -~p+~)/z or smaller. Since the term retained in (2.26) 
corresponds to r=q, <R>k, if it is nonzero, contains 
terms that correspond to r e  q and may be neglected, 
provided N is sufficiently large. 

To illustrate the general need for multiple-term 
formulae, we consider (3.2) and (3.4) and the possibility 
of setting r = 1 and p = q = 2 therein. This corresponds 
to obtaining an estimate of 92h from values of 2~0 for 
other structure factors. The equation in which the 
coefficients would be determined is 

EkEh-k Ezh =cIE~+cz Z z 2 (3.7a) 
k 

or 
E2h= C~EZh + C2<E2 E~_k>,, . (3.7b) 

Equations (3.7a&b) are to be compared with (2.22). 
Consideration of the covariances E2hE2._h=N -1/2 and 
Ezh<E2_kE2_h+k>k=N-3/2 makes it clear that if one 
of the terms in (3.7b) is to be omitted it must be the 
second. But if we follow reasoning analogous to that 
presented by Vaughan for the centrosymmetric case, it 
is seen that the permissible estimation of Ezh, using 
only E 2, is of quite modest reliability as measured by 
its formal variance. On the other hand, use of both 
terms in (3.7b) leads to a significantly improved relia- 
bility for estimating E2h, provided the second term con- 
tains a large number of contributors. Since the physical 
background of the problem demands priority of inclu- 
sion in (3.1) for lowest-order terms, we conclude that a 
realistic estimation of E2u from the set {E 2} will re- 
quire an equation of at least two terms, and one of 
them will be of the form CE~h. 

The connection between phase-determining formulae 
for the centrosymmetric and the noncentrosymmetric 
cases is clear. Although in writing (3. l) we have taken 
(Eke) as observables to be raised to the powers a j, we 
may equally well take as observables (E~,Q. The 
observables, as well as the quantity to be estimated, 
must of course be reduced by their mean values. The 
most general form of (3.4) is, then, 

and it applies to both centrosymmetric and noncentro- 
symmetric structures. For example, appropriate choice 
of r, p, and q in the centrosymmetric case makes (3.8) 
equivalent to the ~2, L ,  or ~4 formula of Hauptman & 
Karle (1953). 

4. Approximate formulae and figures of merit 

In order to develop additional relationships useful at 
the start of phase determination, we follow portions of 
§3 of Karle & Karle (1966), but start with 

~_  -1< p ~ pk>k ' (4.1) Eh-- Np~ Ek E h_ 

a restatement of (2.26). We assume* the quantity 
( - qq)h +p~0k + q~0h- pq ~,) is distributed about zero and 

that for the largest IEI values it is small. Then, 

I"~QNf~I<Ef'Eh-PkEffa>-- a k , (4.2) 

where we may restrict k such that [Ek[ is large; this 
restriction will be denoted by averaging over the vec- 
tors k,. Replacement of each exponential implied in 
(4.2) by the first term of its series expansion leads to 

Q ~_ Npq <,Ek,'IEh_ : k]OlEhl-">i; " (4.3) 

From (4.2) and (4.3) we find 

<[Ekl'lEh-:krexp[i(p~ok+q~Oh-:k)]>k ~ 
exp (iq~o~) ~ 

IEklP Eh-  P k 
q r 

(4.4) 
which gives us two new formulae: 

cos (q~n)-  Cp~(qq~h) 

= <IEkIPIEn_ :~,l a cos (p~0k+ qfPh-: k)>kr (4.5) 

sin (q~Oh) ~-- Spq(q~Oh) 

<[EI, IPIEh_ :k[ "sin (P~0k+q~0h_ : k)>k, 

= / --h/IEklPl~" Pkl~\ ......... . (4.6) 
1 - ~  l /k,  

If we consider the imaginary part of (4.2) we have 

<IEkIPlEh_ p k[ q sin p . 

(4.7) 

Expansion of the sine function in (4.7) and retention of 
the first term gives 

<[EkIPlEh_ :k[ a (--qq)h+p~0k+q~0h_ :k)>kr--~0, (4.8) 

* This assumption and the validity of allowing only large 
IEI values in (4.2) may be justified by following {} 3.2 of Karle 
& Karle (1966) and replacing each equation by the corres- 
ponding more general form; our equation (4-12) is to be com- 
pared with (3.25) of Karle and Karle. These authors have 
pointed out the approximate nature of this reasoning and the 
inherent loss of accuracy in formulae dependent upon restric- 
tion of k. 
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which upon rearrangement yields a general angle-sum 
formula: 

([fk[PlEh-~klq(p~Ok-bqq)h-Pak))kr 
q~Oh~, ~,pwa = ([EkIP[ Eh-° Iq\ 

i k l / k ,  
(4.9) 

If for the vectors kr the values of [El are about the 
same, then (4.9) becomes 

~ " ( ) , (4.10) q ~ g h  - -  ~pq= p~ok + q~9 h _  p k 

q k r  

and under the same conditions (2.28) can be written 

/sin(pq~kq-q~Oh-" k))kr (4.11) 

(c( tan (q~0h) ~ OS Pfak + q~0 h _ P 
q kr 

Restrictions must be placed on the angles in (4.8), 
(4.9), and (4.10) to make the equations meaningful. In 
(4.8), it is sufficient to impose the condition: 

- -  ~r < - q ~ h  q - P ~ k  -t- q ~ h -  p k -< 7C q 

for each vector k. In (4.9) and (4.10) it is necessary to 
impose procedural restrictions. As in (4.8), each indi- 
vidual angle sum is adjusted to be greater than -rc  and 
not greater than re. We may interpret the right-hand 
sides of (4.9) and (4.10) to be weighted averages; 
application of either then begins with the calculation 
(subject to the foregoing condition) of four sums: 
(la) the sum of positive contributors, (lb) the sum of 
the corresponding weights, (2a) the sum of nonpositive 
contributors, and (2b) the sum of the corresponding 
weights. If A=(la)/(lb) is greater than B=(2a)/(2b) 
by more than re, 2z~ is added to B. The desired result is 
then given by 

q~0h = [A x ( lb)+  B x (2b)]/[(lb)+(2b)]. 

It remains to find a means of estimating the goodness 
of a phase determination as obtained from (2.28). In 
following work by Cochran (1955), and the extension 
of it by Karle & Karle (1966), we take as the prob- 
ability distribution for q~0h: 

P(q~Oh)= {2rclo[e,a(h)]} -1 

x exp {ep~(h) c o s  [q~Oh--flpqOl)]}, 
where 

Ctp~(h) = { [ ~ lcr~(h, k) cos (P~0k + q~0h_ ~ k)] 2 

+[~krtCPqOl, k) sin(p(ok+q~oh-:k)]2} 1/2 , 

(4.12) 

(4.13) 

I pV(lEhl~>. IEhlflEkl" Eh_. k .  , 

flp~(h) = tan-  ~ a q k, 9 Pk (IEklPlEh-:kaCOS( pqk+q~°h--4 ))k, 

(4.15) 

and lo is a modified Bessel function (see Abramowitz & 
Stegun, 1965). It is emphasized that (4.14) is for equal 
atoms. Inspection of (4.12) shows that the strength of 
any phase calculation can be estimated by the value 
of c~. However, the variation of c~ with the number of 
contributors in the calculation of a phase leads us to 
propose a normalized form of e, a consistency index 
given by 

),,~(h)=~.p~(h)/~ Kp~(h,k), (4.16) 
kr 

which can be simplified to 

),,q(h) = (A~ q- B2q)l/2/ ~ IEklPlE h p k I _ a, (4.17) 
kr q 

and is equivalent to 

yp~(h) - :.~2 . c2 ~1/2 (4.18) 
- -  ~ ,~  Pq - -  ~ pa l  • 

In (4.17) 

A,a= k, ~ lEklPlEh-Pull' COS (p~0k +q~0h_ P k ) ' ,  (4.19) 

and 

= ~" I kVsin( p~°'nt-q~°h- k)" gp~ ~ IEkl p E h_ p p (4.20) q q 

A straightforward rearrangement of (4.16) leads to 

[ ~ K(k)K(k t) cos (~k--~k') ] 1/2 

k,k' 

),= ~ tc(k)K(k') ' 
k,k' 

(4.21) 

where ~k = [ P ( P k - [ - q ~ h - ( p / q ) u ] .  Clearly )' is a function of 
the agreement between individual indications of a 
phase; and its value may range between zero and unity. 
The value of), will tend towards unity when the contrib- 
utors to the right-hand side of (2.28) are in substantial 
agreement among themselves, and it will tend towards 
zero when these contributors are in substantial dis- 
agreement, that is, the value of ), is a measure of the 
internal consistency of (2.28) in its application. 

5 .  C o n c l u s i o n  

Several phase-determining relationships for space 
group P 1 have been presented. As demanded by the 
requirements of practicality, the forms we have found 
are quite generally applicable to all noncentrosymme- 
tric problems, provided equations (3.4) and (3.8) are 
equivalent in application, i.e., provided the mean 
values of (3.8) are sufficiently near zero. This condition 
may not be met in particular cases due to special dis- 
tributions of atoms, those having a tendency toward an 
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inversion center at the origin being the most frequently 
encountered. In any case, it is easy to show that all 
phase relationships of the preceding sections have their 
analogous forms, which include correction terms to 
compensate for nonzero mean values, as in (3.8); but 
in normal noncentrosymmetric problems, these correc- 
tion terms will be small and can be neglected safely. 

Unfortunately, in certain space groups, the special 
reflection subsets that provide a priori phase informa- 
tion at the start of phase determination yield nonzero 

values for E p. For example, in space group P212121 the 

three principal projections have E z=O, but the corre- 

sponding value for space group P222 is E 2= 1. In our 
further remarks, we consider only problems where 

E2___ 0, both for the three-dimensional data set and for 
the subsets of special symmetry; the general case will 
be dealt with elsewhere. 

We are experimenting with a multiformula pro- 
cedure for the application of our phase relationships, 
and excellent preliminary results indicate the following 
outline as remaining the likely core of our computer 
formalism for the implementation of the procedure. 

(i) The calculation of  values for 2~o 
Two formulae are used to generate values for all 2~ 

from the subset values of known 2~0: 

2(Ph* ~ ~27 = (IEuEh-klg(2(Pk +2~°h-u))k" (5.1) 
(IEkEh_klZ)kr 

COS 2~Ola'~ ~ C 2 2 :  
( IGEh_ul  z cos (2~0k + 2~0h-U))U, 

. . . . . . . .  

(IEkEh-k[2)k, 
(5.2) 

A more useful approximate:]: form of C22 is used in 
practice" 

COS 2f, O h '~ C22 ~' 
(IEkEh_k] z cos 2(,Ou c o s  2~Oh_k)kr 

(]EkEh-kl2-cos 2 2q)U)i7 ....... " 

(5.3) 

(ii) Phase assignment 
From among the reflections for which 2~0 is un- 

ambiguously known, such reflections as may be used 
to specify the origin and enantiomorph are chosen, 
and each one is arbitrarily assigned one of the two 
possible values for ~0. Also included in the table of 
initial phases, ~Ph, are those determined by other 

* It may be necessary to arbitrarily restrict 2~0 to the range 
0_< 2~0 < n, for example, as in the case where the a priori phase 
information is limited to 2q~=0 or n. Clearly, the restricted 
values of 2¢p then correspond to [2~ol or cos 2q~. 

"~ In the case where the space group is one of an enan- 
tiomorphous pair, $22 also may be applicable, but then the 
straightforward use of T22 is indicated. 

This approximation to C22 is rigorously correct if 
(cos 2 2~Ok)kr= 1 ; it becomes invalid as ( cos  2 2~Ok)kr -+ O. 

means, e.g., the application of (2.20) or the B3.0 
formula of Karle & Hauptman (Karle & Hauptman, 
1958; Katie, 1970). 

(iii) The calculation of  values for ~o 
Two formulae are used in the calculation of values 

for all ~o: 

tan ~Ph -~ T~ 
_ (WkWh_2uIEklZlEh_2k] sin (2~0k-~t-~h_.2k)>_k_r (5.4) 

(WuWh_zklEklZlEh_zul cos (2q)u + ~0h-a,))kr ' 

tan ~0h -~ T~ = (WkWh-klEkEh-kl sin (~0k-{-(/gh-k))k r 
(WuWh-klEkEh-u] COS (~Ok + ~Oh-U))k-, 

(5.5) 

Equations (2.9) and (2.14) have been modified to give 
(5.4) and (5.5), where w is a discrimination function. 
In accord with the customary usage of w, albeit im- 
plicit, w is taken to be unity unless by reason of un- 
certainty in the value of ~0, or one of its multiples, it 
should be zero. As an alternative to this step function, 
a continuous function such as 

Wh= tanh [½y(h)~(h)] (5.6) 

probably would be computationally more efficient. 
A phase, the average of values obtained from the 
tangent formulae (5.4) and (5.5), is taken as deter- 
mined when there is good agreement between the re- 
sults. After a suitably large number of phases are thus 
determined, the results of (5.5) are taken as the set of 
tangent-refined phases. 

This multiformula approach to the phase problem 
provides an unambiguous route to a single-solution set 
of phases. The explicit use of a priori phase informa- 
tion, in effect, introduces new phase constraints that 
serve to extend the range of problems amenable to 
solution by direct methods. Indeed, we expect this 
approach to yield the correct phases in cases where 
solution of the phase problem would be uncertain or, 
at best, difficult with only the basic product relation- 
ships (i.e., those where p = q = 1). 
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The Crystal and Molecular Structure of Carbonatodiamminecopper(II), Cu(NH3)2CO3 

BY MARTHA H. MEYER, PHIRTU SINGH, WILLIAM E. HATFIELD AND DEREK J. HODGSON* 

Department of  Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A. 

(Received 13 September 1971). 

The crystal and molecular structure of carbonatodiamminecopper(II), Cu(NH3)2CO3, has been determined 
from three-dimensional X-ray data collected by counter methods. The material crystallizes in the space 
group P21/c of the monoclinic system, with four molecules in a cell of dimensions a = 5.640 (2), b = 
10.579 (3), c=7.462 (3)/~, and fl= 97°49 (1)'. The observed and calculated densities are 2.35 (2) and 
2.372 g.cm -3. Least-squares refinement of the structure has yielded a final value for the conventional R 
factor, on F, of 0.032 for 934 data greater than their estimated standard deviations. The geometry at 
the copper atom is approximately a tetragonal pyramid whose basal plane consists of the two ammine 
nitrogen atoms and two oxygen atoms from a single carbonate. The copper atom of each formula unit 
is bonded to the adjacent unit through the terminal carbonate oxygen atom, with a Cu-O bond length 
of 2.303 (2) ,&. The Cu-N distances are 1-971 (2) and 1"984 (2)/~. The Cu-O distances to the oxygen 
atoms in the bidentate carbonate are 1.986 (2) and 1.989 (2)/~,. The N-Cu-N angle is 97.80 (12) °, while 
the chelated O-Cu-O angle is 66.38 (8) °. There is hydrogen-bonding between the ammine hydrogen atoms 
and the carbonate oxygen atoms of adjacent units. 

Introduction 

The structure of carbonatodiamminecopper(II), 
Cu(NH3)2CO3, has been previously investigated by 
Hanic (1962, 1963), using two-dimensional X-ray data, 
and the spectroscopic properties of the complex have 
been discussed by Tomlinson & Hathaway (1968). 
Carbonatodiamminecopper(II) is also of considerable 
magnetic interest, as described in our recent examina- 
tion of its low-temperature magnetic properties (Jeter, 
Hodgson & Hatfield, 1972). 

The crystal structure reported by Hanic (1963) 
indicates that apparently chemically equivalent bonds, 
such as the two Cu-N bonds, have significantly dif- 
ferent lengths. While it is true that two-dimensional 
data cannot be expected to give great precision in the 
atomic parameters, the reported values of these bond 
lengths are so disparate as to be either of enormous 
chemical interest or to cast doubt on the validity of the 
model. We have, therefore, undertaken an accurate 
three-dimensional single-crystal X-ray structural deter- 
mination of the complex. 

* Author to whom correspondence should be addressed. 

Experimental 

Suitable crystals were obtained by adding 10 ml of 
95 % ethanol to a saturated solution of basic copper 
carbonate, Cu(CO3).Cu(OH)2, in 35 ml concentrated 
ammonium hydroxide solution and removing the re- 
sulting turquoise precipitate by filtration. The filtrate 
was allowed to stand for six days, after which the dark- 
blue, rhombic crystals were separated by filtration and 
were air-dried. The crystals were found to decompose 
slowly, turning green after a week's exposure to moist 
air; they could be preserved indefinitely in a desiccator. 

On the basis of precession and Weissenberg photo- 
graphy, the crystals were assigned to the monoclinic 
system, and examination of the Okl, hkO, hOl, and hll 
zones demonstrated systematic absences of l odd in the 
hOl zone and k odd for 0k0 reflections; hence, the pre- 
vious (Hanic, 1963) space group assignment of P21/c 
was confirmed. The cell constants, obtained by the 
least-squares procedure described below, are a =  
5.640 (2), b =  10.579 (3), c=7.462 (3)/~, and /3= 
97.82 (1) °. The observations were made at 25°C, with 
the wavelength assumed to be 2(Mo K~1)=0.7093/~. 
A density of 2.372 g.cm -a calculated for four formula 
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